B 0L95534 0002082 OLS WE

Special Copyright Notice

© 1992 by the American Institute of Aeronautics and
Astronautics. All rights reserved.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:24:30 Information Handling Services, 1999

AIAA G-031 92 M@ 0L95534 0001289 397 M
ANSI/AIAA
G-031-1992

Guide

Life Cycle Development of
Knowledge Based Systems
Using DoD-Std 2167A

) _

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:24:30 Information Handling Services, 1999

ATAA G-031 92 WE 0L95534 0001290 009 WM

ANSI/ATAA
G-031-1992

American National Standard

Guide for Life Cycle Development of
Knowledge Based Systems with Dod-Std-2167A

Sponsor

American Institute of Aeronautics and Astronautics

Approved July 9, 1993

American National Standards Institute

Abstract

The purpose of this guide is to provide program managers and system

engineers with a blueprint for developing and managing knowledge based
systems within typical aerospace environments. The guide is consistent

with the requirements of Dod-Std-2167A, yet permits the creativity needed

for the still maturing field of artificial intelligence and knowledge based systems.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:24:30 Information Handling Services, 1999

AIAA 6-031 92 MW 0695534 0001291 TS5 NN
ANST/ATIAA G-031-1992

American Approval of an American National Standard requires verification by ANSI that
. the requirements for due process, consensus, and other criteria have been met by the

National standards developer.

Standard

Consensus is established when, in the judgement of the ANSI Board of Standards Review,
substantial agreement has been reached by directly and materially affected interests.
Substantial agreement means much more than a simple majority, but not necessarily
unanimity. Consensus requires that all views and objections be considered, and that a
concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not
in any respect preclude anyone, whether he has approved the standards or not, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not
conforming to the standards.

The American National Standards Institute does not develop standards and will in no
circumstances give an interpretation of any American National Standard. Moreover, no
person shall have the right or authority to issue an interpretation of an American National
Standard in the name of the American National Standards Institute. Requests for
interpretations should be addressed to the secretariat or sponsor whose name appears on
the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn
at any time. The procedures of the American National Standards Institute require that
action be taken to affirm, revise, or withdraw this standard no later than five years from
the date of approval. Purchasers of American National Standards may receive current
information on all standards by calling or writing the American National Standards

Institute.

Guide for life cycle development of knowledge based systems with
DoD-Std-2167A / sponsor, American Institute of Aeronautics and
Astronautics; approved, American National Standards Institute,

p. cm.

At head of title: American national standard.

“ANSI/ATAA G-031-1992”

ISBN 1-56347-025-X

1. Computer software--Development--Standards--United States.
2. Expert systems (Computer science)--Standards--United States.
I. American Institute of Aeronautics and Astronautics. II. American
National Standards Institute. III. Title: American national
standard guide for life cycle development of knowledge based systems
with Dod-Std 2167A.

QA76.76.D47G85 1993
623--dc20 92-46900
CIP
Published by

American Institute of Aeronautics and Astronautics
370 1’Enfant Promenade, SW, Washington, DC 20024

Copyright © 1993 American Institute of Aeronautics and Astronautics
All rights reserved

No part of this publication may be reproduced in any form, in an electronic
retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America

ii

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1399 13:24:30 Information Handling Services, 1999

AIAA G-031 92 M@ 0L95534 0001292 9481 WM

ANSI/ATAA G-031-1992
CONTENTS
L) o ¢ v
1.0 Introductioncocoiiiiiiiii e 1
1.1 Backgroundooiiiiiiiiiiiii e 1
1.2 PUIPOSE ettt e e eas 1
1.3 APPLHCAtIONS ... veniiiiiiii e 1
2.0 Referenced Publications............cocoovvinviiiiiiiiiiiiiiiininnn, 2
3.0 Overview of DoD-Std-2167A and Other Life Cycle Models.............. 2
3.1 INETOAUCHION . ..uvei ettt ittt e s s e s e e seressessnsenerasonsnesseenss 2
3.2 DOD-Std-2167A OVEIVIEW t.viviiiiiiiiieeririiiiieiiseiniieenetisiisisssssaeersonsiasnes 2
3.2.1 General ReqUIrements.....ccicvviuviiniiiiiiniiiniiniiiiriirecesiesesne 2
3.2.2 Phases of a Waterfall Model........ccooeiviiiniiininiiiniiininicninnnnnn, 3
3.23 Technical Reviews and Documentationcoovvvviiieiiiiniiiinininieniinnien, 5
3.3 Other Software Life Cycle Modelscvevviiiiiiiiiiiiiiiiiiinn, 10
3.3.1 A Spiral Model for Software Development.........ocovvvviiiiiiiiiiiinini, 10
3.3.2 The Evolutionary Model of Software Development..........c.cciviiiinininiinnnn. 11
4.0 Development Issues and Trades for KBS Life Cycles.................... 12
4.1 318 (04 L 1)1 12
4.2 Typical KBS Development COnstraints...........cocvvvieviiiiiiiiiiiiiin. 12
4.3 KBS Development Needscoivniviviiiiiiininiiiiiiiiiiiinn., 13
4.4 Trades for a KBS Life Cycle.....c.oviiriiiiiiiiiiiiiiiiiiiiiiniceicn e 13
5.0 Recommended KBS Life Cycle, The AISE Model 18
5.1 Introductiono.ooviiiiiiiiii e 18
5.2 KBS Life Cycle Phases.......ocvvuiviiiiiniiniiiinniiniiinsiiiisiiie i 18
5.2.1 Application Problem Identification Phase..........coiiiiiiiiiniiiciiininiinnnnin, 18
5.2.2 Prototyping Phasecoovviiiiiiiiiiiiiii e 18
5.2.3 Requirements Profotypeoovvuvieiiiiniiniiniiniiiiiiiiiiiiiinsnn e 18
5.2.4 Design ProtOLYPEe cuvvevininiiiiiniiiiiiniiiiiiis e s 20
5.2.5 Product Prototype ..vvvvvviriviiiniiiiiiiiiiiinii e 20
5.2.6 Development / Integration Phase.........ccccoiviviiiiiiiiiiiniiniieiiiiinniien, 20
iii

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1399 13:24:30 Information Handling Services, 1999

AIAA G-031 92 BN DL9553% 0001293 818 WM

ANSI/ATIAA G-031-1992

5.2.7 Integrated Testing and Evaluation Phase........cccccoviiiiiviieinnininnnniiinnennnnn, 20
5.2.8 Maintenance Phasecooiiiiiiniiii i 20
5.3 Recommended REVIEWScouvuiiiiiiiiiiiiii e 20
5.3.1 Requirements Prototype Concept Review (RPCR)........ccoovveveveveieiviiieinnns 23
5.3.2 Requirements / Design Concept Review (RR/DCR)......c.covvvviviiiiniininninnen. 23
5.3.3 Initial Design Prototype Review (IDPR)........ccccoiiiiiiiieiiiiiiriniiiiinniininnn, 23
5.34 Preliminary Design Review (PDR).........cociiiiiiiiiiiiiiiiiiiiiiiici i eiinees 23
5.3.5 Initial Product Prototype Review (IPPR)..........ccvvviiiiiiiiniiiiiiiiniiiiiinanans 23
5.3.6 Critical Design Review (CDR).......ccoiiiiiiiiiiiii i 23
54 Recommended Documentation..............co.vuiiriviiiiiiiiiiniiiieniesieninneninens 23
5.5 Tailoring the KBS Life Cycle........coooviniiiiiiiiiiiii e 24
Figures

Figure 3-1 An Example of System Development Phases, Reviews, and Audits.................. 4
Figure 3-2 Deliverable Products, Reviews, Audits, and Baselines................cccvvvvvnnnnnn.. 6
Figure 3-3 A Spiral Model for Software Development................ccocoiiiiiiininiiniininnns.. 11
Figure 4-1 Software Development Model CompariSonsocevviveiieiireirerneenneennnns. 14
Figure 4-2 Matching of Software Models to Aerospace Constraintsccoeeeeuenenn.. 15
Figure 4-3 The Al Software Engineering (AISE) Model for KBS Development 16
Figure 4-4 AISE Fit with DoD-Std-2167A and System Life Cycle.......cccceeevvieeiniunnnn. 17
Figure 5-1 Requirements ProtOtyPevviviiviriieteriiiiiieieieeeeiereeeeeeeneineeneanns 19
Figure 5-2 Design ProtOLYPecuouiuiniiiriiiie et e e iene e neneeaans 21
Figure 5-3 Product Prototypecooovuiiiiiiiiiiiiiiiiiii e 22
Figure 5-4 AISE Tailoring for Acquisition Cycle Phases............cococvivviniviiieninneninnen.. 25
Figure 5-5 AISE Tailoring for Maintenance Stage of an Acquisition Cycle 26

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1399 13:24:30 Information Handling Services, 1999

"AIAA G-031 92 W DL95534 0001294 754 WA

Foreword

This Guide for Life Cycle Development of
Knowledge Based Systems with DoD-Std-
2167A has been sponsored by the American
Institute of Aeronautics and Astronautics as
part of its Standards Program.

Knowledge Based Systems (KBS) have been
emerging out of the artificial intelligence (AI)
research laboratories and into the main stream
of aerospace software. As this evolution
occurs, the methodologies and constraints of
software development need to be overlaid
onto those of KBS development. This
overlay is considered necessary in order for
KBS to gain wide acceptance and use in
aerospace systems.

The purpose of the Guide is to provide
program managers and system engineers
within a blueprint for developing and
managing KBS within typical aerospace
environments. It is published as a guide at
this point, instead of as a full standard,
because it was felt that the field is not mature
enough and flexibility is still needed.

The ATAA Standards Procedures provide that
all approved Standards, Recommended
Practices, and Guides are advisory only.
Their use by anyone engaged in industry or
trade is entirely voluntary. There is no prior
agreement to adhere to any AIAA standards
publication and no commitment to conform to
or be guided by any standards report.

In formulating, revising, and approving

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:24:30

ANSI/ATAA G-031-1992

standards publications, the Committees on
Standards will not consider patents which
may apply to the subject matter. Prospective
users of the publication are responsible for
protecting themselves against liability for
infringement of patents or copyrights, or
both.

This project is the undertaking of the AIAA
Committee on Standards for Artificial
Intelligence (AI/CoS) and its Life Cycle
Working Group (LCWG). The LCWG
developed this document and incorporated
comments of reviewers from government,
industry, and academia. The following
people played key roles in bringing this
Guide to publication and held the noted
positions at the time of their efforts:

Peter A. Kiss (Sentar, Inc.) (LCWG Lead)

Michael Freeman (NASA SSF Program
Office) (AI CoS Co-Chair)

Charles Hall (Lockheed Research Center) (AL
CoS Co-Chair)

Jack Aldridge (McDonnell Douglas)

Peter Russo (Anderson Consulting)

Suggestions and improvement to this
document are encouraged. They should be
sent to:

AIAA Standards Department
370 L’Enfant Promenade, SW
Washington, DC 20024-2518

The ATAA Standards Technical Council
(A. H. Ghovanlou, Chairman) approved the
document in November 1992.

Information Handling Services, 1999

AIAA 6-031 92 BN 0L95534 0001295 L0 W
ANSYT/ATAA G-031-1992

vi

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:24:30 Information Handling Services, 1999

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

AIAA

1.0 INTRODUCTION

1.1 Background

During the past ten years, the Knowledge
Based Systems (KBS) branch of Artificial
Intelligence (AI) has matured considerably.
Many small and medium sized prototype
systems have been successfully developed
and implemented. The few existing larger
KBS are much more complex and have been
implemented at a slower rate. The organiza-
tions at the leading edge of using Al, ones
that have been developing KBS and applying
them, are moving toward the integration of
KBS into the mainstream of their computing
environments. This move is leading to a
more traditional total systems approach to
KBS, making them an integral part of the
system instead of a stand alone tool or appli-
cation. With the emphasis shifting to a sys-
tems approach, comes the need for more rig-
orous development and integration method-
ologies. This trend, coupled with the general
aerospace community's desire to control
costs and schedules, provides the impetus for
having a KBS life cycle model.

Several basic phases are inherent parts of any
software (including AI / KBS) development
program. These are: problem conceptual-
ization / definition; system design; system
development; testing and integration; and
maintenance and enhancement. The sequence
in which these are carried out, the amount of
emphasis/effort given each phase, and the
controls associated with the execution of
work combine to define a life cycle model.
At present, there are several generally
accepted models for software development.
These are the waterfall, the spiral, and the
evolutionary (rapid prototyping) models.
There are many variations of these three as
well as some lesser known models. The best
known is the waterfall model typically used
with DoD-Std-2167A. This has been used
(in one form or another) for the development
of thousands of software systems, and is
being mandated for nearly all DoD develop-
ment of software. Many of the existing
software development models have been tried
on KBS with varying degrees of rigor, and

13:24:30

6-D31 92 MM 0bL95534 000129k 527 EE

ANST/AIAA G-031-1992

success. Each has strengths and shortfalls in
relation to KBS development under the
emerging, more formal conditions discussed
above. It is to meet that emerging demand
(i.e., integration into general software engi-
neering methodology), and to provide some
structure and uniformity to aerospace
knowledge based system development, that
this Guide is written.

1.2 Purpose

The purpose of this guide is to provide pro-
gram managers (both in government and
industry) and system engineers with a
blueprint for developing and managing KBS
within typical aerospace environments.
Details are included on the various phases of
KBS life cycles and how they fit within a
waterfall software development life cycle
exemplified by the DoD-Std-2167A frame-
work. Reviews to be held during develop-
ment are discussed along with highlights of
recommended documentation. The detailed
contents of KBS documentation are not dis-
cussed in this guide.

1.3 Applications

As presented, this guide is focused on the
development of KBS during what is referred
to as the Full Scale Development of a system
(i.e., the final version before proceeding with
production). With very little tailoring, it can
also be used for KBS development during the
earlier phases of Concept Definition and
Demonstration / Validation of systems.

The presentation in this guide uses the DoD-
Std-2167A framework with the waterfall
model for conventional software develop-
ment. Naturally, the guide can be easily
adapted to any waterfall type model
implementation.

Finally, although the presentation is limited to
Knowledge Based Systems because they are
at the leading edge of the state-of-the-
application of Al, much of the guide can be
used for other branches of Al and possibly
for other areas where critical methods need to
be prototyped within a larger system context.

Information Handling Services, 1999

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

ATAA G-031 92 B Db95534 0001297 4b3 BN

ANSI/ATAA G-031-1992

2.0 REFERENCED
PUBLICATIONS

The following documents are applicable
when using this guide for the development of
KBS.

1. Dod-Std-2167A Defense System Soft-
ware Development; 29 February 1988

2. Dod-HDBK-287 A Tailoring Guide for
Dod-Std-2167A, Defense System Soft-
ware Development; (Draft) 14 November
1988

3. Mil-Std-1521B Technical Reviews and
Audits for Systems, Equipment, and
Computer Software

4. IEEE Std-729-1983 Standard Glossary of
Software Engineering Terminology

3.0 OVERVIEW OF DOD-
STD-2167A AND OTHER
LIFE CYCLE MODELS

3.1 Introduction

The general purpose of software development
life cycle models is to introduce discipline
into the development process and thus reduce
risk. This discipline, in turn, leads to better
end products and better management of the
development process. Readers who are well
versed in software life cycles may choose to
skip chapter 3.0 and move on to KBS life
cycles.

The most prevalent software life cycle model
to date has been the waterfall model.
Variations of the waterfall have been used for
over 20 years. The Department of Defense
(DoD) has adapted this model officially, in
the DoD-Std-2167A document, and mandates
its use on DoD software. It should be noted
that the DoD-Std-2167A allows for tailorings
divergent from a waterfall model. Since other
versions of the waterfall model can be
translated to the one in the DoD Standard, we
will use DoD-Std-2167A here as an example.

Other software models have been used
successfully for various applications. These
include the spiral model and the evolutionary

2

13:24:30

model, which are summarized briefly in
section 3.3.

3.2 DoD-Std-2167A Overview

The purpose of the Standard is to establish
requirements to be applied during the acqui-
sition, development, or support of software
systems being acquired by DoD. The
Standard primarily applies to Computer
Software Configuration Items (CSCI), but
can be used for non-CSCI items such as
support software and firmware.

3.2.1 General Requirements

In addition to providing a detailed waterfall
model, 2167A provides guidance on overall
management. This guidance is in the form of
general requirements and encompasses the
areas discussed below.

3.2.1.1 Software Development Man-
agement. Implement a process for manag-
ing the development of the deliverable soft-
ware. This includes the use of the model
phases discussed in section 3.2.2 and the
documentation of section 3.2.3. In addition
to these, the management of software will
include: software development planning; risk
management; management reviews; security;
subcontract management; interface with
independent verification and validation
agents; maintenance of a software
development library; implementation of a
corrective action process; and a prob-
lem/change reporting activity.

3.2.1.2 Software Engineering. Per-
form software engineering that incorporates
the following good practices: utilize sys-
tematic software development methods; pro-
vide a software engineering environment for
the development phase; perform safety anal-
ysis to reduce hazards; consider incorporation
of non-developmental software; organize the
software systematically into CSCIs and de-

“compose to Computer Software Components

(CSCs) and Computer Software Units
(CSUs); provide traceability of requirements
to design; use Higher Order Languages
(HOL) whenever possible; use design and
coding standards specified; maintain software
development files for each CSU; analyze

Information Handling Services, 1999

AIAA 6-031 92 BN 0L95534 0001298 3TT W

processing resources and reserves to assure
proper operations.

3.2.1.3 Formal Qualifications Test-
ing (FQT). Conduct FQT of each CSCI on
the target computer system or equivalent.
This shall include stressing the software at
the limits of its specified requirements. In-
cluded under Formal Qualification Testing
are: FQT planning; the necessary software
test environment; independence of FQT ac-
tivities; and traceability of requirements to the
test cases.

3.2.1.4 Software Product Evalua-
tions. Conduct evaluations of deliverable
software and documentation to include: in-
dependent product evaluations; a final
(acceptance) evaluation to show the product
meets the requirements; prepare and maintain
records of the evaluations; and the recorded
criteria against which the software was eval-
uated.

3.2.1.5 Software Configuration
Management. Perform software configu-
ration management in compliance with the
following: perform configuration item
identification in accordance with identification
scheme specified in contract; implement
configuration control on identified items;
provide a configuration status accounting
system; provide storage, handling and
delivery of project media; provide for imple-
mentation of Engineering Change Proposals
(ECP) and Specification Change Notices
(SCN).

3.2.1.6 Transition to Software Sup-
port. Provide transition support in compli-
ance with the following requirements: deliv-
erable code shall be capable of being regen-
erated and maintainable; prepare plans for
transitioning from development to support;
perform installation and checkout of delivered
software; provide software support and
documentation for delivered software.

The above provides a quick summary of the
general requirements. For further details, the
reader should consult DoD-Std-2167A. Most
of these requirements are applied to each
phase of the software life cycle and many of

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:24:30

ANSI/ATAA G-031-1992

them are applicable to Knowledge Based
Systems.

3.2.2 Phases of a Waterfall Model

The discussion below is for software devel-
opment during Full Scale Development
(FSD) of a system. As such, the previous
phases of Concept Definition and
Demonstration / Validation have established
some of the foundations for the activity.
System analysis / definition has documented
the preliminary concepts, their feasibility and
cost / benefit tradeoffs. The traditional
phases of a waterfall model during FSD are
shown in Figure 3-1. These phases are
briefly summarized below.

3.2.2.1 System Requirements Anal-
ysis / Design. During this phase, the con-
tractor analyzes the preliminary system spec-
ification and determines whether the software
requirements are consistent and complete.
Analysis is conducted to determine the best
allocation of system requirements between
hardware, software, and personnel in order
to partition the system into HWCIs, CSClIs,
and manual operations. As a result, a prelim-
inary set of engineering requirements and as-
sociated sets of external interfaces are defined
for each CSCI.

3.2.2.2 Software Requirements
Analysis. During this phase, a complete set
of software engineering requirements and
interfaces are defined for each CSCL

3.2.2.3 Preliminary Design. The
purpose of this phase is to develop the design
which includes mathematical models,
functional flows, and data flows. For each
CSCI, preliminary design is developed and
software and interface requirements are
allocated to CSCs. Also, the requirements
for testing and integration of CSCs are
established, to include stressing the software.

3.2.2.4 Detailed Design. During this
phase, the design is refined to the extent that
it is ready for coding. For each CSCI, the
detailed design is developed, and the re-
quirements of each CSC are allocated down
to CSUs. Detailed designs of the external
interfaces of each CSCI are developed and

3

Information Handling Services, 1999

ATAA G-031 92 M 0L9553% 0001299 23L WM

1992

-031-

ANSIAIAA G

SHPNY pue ‘SmMalAdy ‘saseyq judswdofead(waysg jo spdurexyy uy

3Nnasva

ONILS3AL ONY

NOLLVHOILNI

080

ONUS3L
NSO Ny

BNIJoS

I-€ d1n3iy

3NM3sva
QAUVYI0TIV

e

©)
!
!
!

az1ivisa
NDIS3a
AHVNINNZYd
SISATVNY
SININIHINOIY
JHVMLI0S

3 ()
©
!

!

®

N9Is3a

NOSIS3a

L - - - - _
SM3IATH _
FHVMOHYH HLIM G3LVHDILNI 38 | ONLLS3L
AV ONV SM3IATES 31dLLINW OQ AV » | 1050
M3IAZHE NOILVOIINTVAD TVWHOd + HOd _
1KINV NOLLVHNDIINOD TWOISAHd » V3d I
110NV NOLLVHNDIINGD TYNOLLONNA » ¥od
MIIATY SSINIOVIY 1STL » HHL |
M3IATY NDISIA TVOILHD + HOD
MIIATH NOIS3A AHYNIWITIHd + Had _
M3IIAZH NOULVDIFIOIdS FHVMLIOS » HSS |
M3IIAIH NOISTA WILSAS » HGS
M3IATH SINIWIHINDIE W3LSAS » uus (Y™ 9
SMIIAIY
Mo] nowrvie | g (o)1 SoLT
NOLLONAOHJ W3LSAS
wo)—()
ONILS3L
OMH

NOLLYDIHEYS

a3viza

AHVNINIIIHd

SISATYNY
SINIW3HIND3Y
SUYMAHVH

Has

NoIsag
Wals, >wa SIN3A3HIND3Y

SISATYNY

W3LSAS

NOIS3Q/SISATYNY
S1NIWIBINDIY

WALSAS

1999

Information Handling Services,

13:24:30

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
1999

July 15,

ATAA G-031 92 WM 0b95534 0001300 888 W

allocated. CSC and CSU test requirements,
responsibilities and test cases are developed
and documented.

3.2.2.5 Coding and CSU Testing.
During this phase, the CSUs are coded and
tested, according to developed procedures, to
ensure that the logic and algorithms are
correct and the CSUs satisfy their require-
ments. Based on testing results, the neces-
sary revisions are made to the design, code
and documentation to reflect corrections.
Also, test procedures are developed for con-
ducting CSC tests.

3.2.2.6 CSC Integration and Test-
ing. In this phase the CSUs are integrated
into CSCs and tested to ensure that CSC al-
gorithms and logic are functioning properly
and that requirements are satisfied. The nec-
essary revisions are made to design, code and
documentation to reflect changes based on
test results.

3.2.2.7 CSCI Testing. In this phase,
the CSCs are integrated to form the CSCls
and the full capabilities of the CSClIs are
tested against requirements. The CSCI inter-
faces are also tested and revisions are made to
code, design and interface documents to re-
flect testing results.

3.2.2.8 System Integration and
Testing. This phase concludes software
development and testing. As the system is
tested, the necessary revisions are made to
software code, design and documentation.

3.2.2.9 Operation and Maintenance
(production and deployment). Once the
system passes Formal Qualification Reviews
(FQR), it enters the next portion of its life
cycle, production or deployment. During this
phase (deployment), the system is operated
and maintained to carry out its intended
functions.

The above phases are representative of the
activity progression under a waterfall model.
Some versions may consolidate several
phases into one or rename them, but the
sequence of events is constant across models.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:24:30

ANSI/ATAA G-031-1992

Full details of the activities of each phase are
in the DoD-Std-2167A for reference.

3.2.3 Technical Reviews and
Documentation

Section 3.2.2 summarized the phases of the
waterfall model. In this section the major
technical / milestone reviews and program
documentation associated with software
development (per 2167A) are summarized.
Figure 3-2 depicts the relationship between
development phases, reviews and associated
documentation.

3.2.3.1 Technical Reviews. The fol-
lowing are taken from Mil-Std-1521B as
summaries for normal reviews associated
with a software development effort. They
probably constitute the maximal set of re-
views that may be required for a given pro-
ject.

3.2.3.1.1 System Requirements
Review (SRR). The objective of this re-
view is to ascertain the adequacy of the con-
tractor's efforts in defining system require-
ments. It will be conducted when a signifi-
cant portion of the system functional re-
quirements has been established.

3.2.3.1.2 System Design Review
(SDR). This review shall be conducted to
evaluate the optimization, correlation, com-
pleteness, and risks associated with the allo-
cated technical requirements. Also included
is a summary review of the system engineer-
ing process which produced the allocated
technical requirements and of the engineering
planning for the next phase of effort. Basic
development/coding/manufacturing consid-
erations will be reviewed and planning for
quality/production engineering in subsequent
phases will be addressed. This review will
be conducted when the system definition ef-
fort has proceeded to the point where system
characteristics are defined and the configura-~
tion items are identified.

3.2.3.1.3 Software Specification
Review (SSR). This is a review of the
finalized Computer Software Configuration

Information Handling Services, 1999

ATIAA 6-031 92 MW 0L95534 0001301 71y B

ANSI/ATAA G-031-1992

SYSTEM REQUIREMENTS
ANALYSIS / DESIGN

e N
SYSTEM SOFTWARE
REQUIREMENTS SYSTEM REQUIREMENTS PRELIMINARY DETAILED
ANALYSIS DESIGN ANALYSIS DESIGN DESIGN
* *
PRELIMINARY SYSTEM SOFTWARE DESIGN
SYSTEM SPECIFICATION DOCUMENTED
SPECIFICATION (PREL DESIGN)
L J
DESIGN TEST PLAN
EST IDs)
DOCUMENT u
PRELIMINARY SOFTWARE
eoureewrs | | JEGREUENS
SPECIFICATION(S) ()
DELIVERABLE
PRODUCTS
PRELIMINARY PRELIMINARY
INTERFACE RE'(';'E?,%FGS&TS INTERFACE
REQUIREMENTS SPECIFIGATION DESIGN
SPECIFICATION DOCUMENT
SOFTWARE
DEVELOPMENT
PLAN
DEVELOPMENTAL
CONFIGURATION
REVIEWS SYSTEM SYSTEM SOFTWARE PRELIMINARY
AND REQUIREMENTS DESIGN SPECIFICATION DESIGN
AUDITS REVIEW REVIEW REVIEW REVIEW
FUNCTIONAL ALLOCATED
BASELINES C BASELINE) C BASELINE)
Figure 3-2 Deliverable Products, Reviews, Audits, and Baselines
6

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:24:30

Information Handling Services,

1999

AIAA G- EIB]: “lE - D[::‘ISSEI'-I DDDLBDE l:5[l -

ANSI/ATIAA G-031-1992

CODING CSC SYSTEM
Dsggl'éﬁn AND CSU INTEGRATION TE‘;%C'NG INTEGRATION
TESTING AND TESTING AND TESTING
SOFTWARE
DESIGN sggggE
DOCUMENT(S) LISTINGS
(DET. DESIGN) o) e)
SOURCE el
CODE CODE
SOFTWARE SOFTWARE
TEST TEST SO';{E‘g?RE
DESCRIPTION(S) DESCRIPTION(S) REPORTS
(CASES) (PROCEDURES)
INTERFACE OPERATION
DESIGN AND SUPPORT
DOCUMENT DOCUMENTS
NOTES:
@ INCORPORATE INTO BASELINE
O INCORPORATE INTO DEVELOPMENTAL .
CONFIGURATION
% MAY BE VENDOR SUPPLIED (see 4.8.4) 85383‘.2’5?2
% MAY BE A: ©)
1. SYSTEM/SEGMENT SPECIFICATION
2. PRIME ITEM SPECIFICATION
3. CRITICAL ITEM SPECIFICATION
t MAY BE DEFERRED UNTIL AFTER
SYSTEM INTEGRATION & TESTING
.'.
SOFTWARE
PRODUCT
DEVELOPMENTAL
} CONFIGURATION) SPECIFICATION(S‘
CSC: T
CRITICAL TEST FUNTIONAL
DESIGN READINESS & PHYSICAL
REVIEW REVIEW CONFIURATION

AUDITS

PRODUCT
BASELINE

C)

Figure 3-2 Deliverable Products, Reviews, Audits, and Baselines - continued

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:24:30

7

Information Handling Services,

ATAA G-03% “2 MR “LA553% 0001303 597 M

ANSI/AIAA G-031-1992

Item (CSCI) requirements and operational
concept. The SSR is conducted when the
CSCI requirements have been sufficiently
defined to evaluate the contractor's respon-
siveness to and interpretation of the system,
segment, or prime item level requirements. A
successful SSR is predicated upon the con-
tracting agency's determination that the
Software Requirements Specification,
Interface Requirements Specification(s), and
Operational Concept Document form a satis-
factory basis for proceeding into preliminary
software design.

3.2.3.1.4 Preliminary Design Re-
view (PDR). This review shall be con-
ducted for each configuration item or aggre-
gate of configuration items to:

(1) evaluate the progress, technical adequacy,
and risk resolution (on a technical, cost, and
schedule basis) of the selected design
approach;

(2) determine its compatibility with perfor-
mance and engineering specialty requirements
of the Hardware Configuration Item (HWCI)
development specification;

(3) evaluate the degree of definition and
assess the technical risk associated with the
selected manufacturing methods/processes;
and

(4) establish the existence and compatibility
of the physical and functional interfaces
among the configuration item and other items
of equipment, facilities, computer software,
and personnel.

For CSClIs, this review will focus on:

(1) the evaluation of the progress, consis-
tency, and technical adequacy of the selected
top-level design and test approach;

(2) the compatibility between software re-
quirements and preliminary design; and

(3) the preliminary version of the operation
and support documents.

3.2.3.1.5 Critical Design Review

(CDR). This review shall be conducted for

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

13:24:30

each configuration item when the detail de-
sign is essentially complete. For CSClIs, this
review will focus on the determination of the
acceptability of the detailed design, perfor-
mance, and test characteristics of the design
solution, and on the adequacy of the opera-
tion and support documents. The purpose of
this review will be to:

(1) determine that the detail design of the

configuration item under review satisfies the

performance and engineering specialty re-
quirements of the HWCI development
specifications;

(2) establish the compatibility among the
configuration item and other items of
equipment, facilities, computer software and
personnel;

(3) assess configuration item risk areas (on a
technical, cost and schedule basis);

(4) assess the results of the producibility
analyses conducted on system hardware; and

(5) review the preliminary hardware product
specifications.

3.2.3.1.6 Test Readiness Review
(TRR). A review conducted for each CSCI
to determine whether the software test proce-
dures are complete and to assure that the
contractor is prepared for formal CSCI
testing. Software test procedures are evalu-
ated for compliance with software test plans
and descriptions, and for adequacy in
accomplishing test requirements. At TRR,
the contracting agency also reviews the
results of informal software testing and any
updates to the operation and support docu-
ments. A successful TRR is predicated on
the contracting agency's determination that
the software test procedures and informal test
results form a satisfactory basis for proceed-
ing into formal CSCI testing.

3.2.3.1.7 Functional Configuration
Audit (FCA). A formal audit to validate
that the development of a configuration item
has been completed satisfactorily and that the
configuration item has achieved the
performance and functional characteristics
specified in the functional or allocated

Information Handling Services, 1999

AIAA G-031 92 BN 0L9553% 0001304 423 BN

configuration identification. In addition, the
completed operation and support documents
shall be reviewed.

3.2.3.1.8 Physical Configuration
Audit (PCA). A technical examination of a
designated configuration item to verify that
the configuration item "As Built" conforms to
the technical documentation which defines the
configuration item.

3.2.3.1.9 Formal Qualification
Review (FQR). The test, inspection, or
analytical process by which a group of con-
figuration items comprising the system are
verified to have met specific contracting
agency contractual performance requirements
(specifications or equivalent). This review
does not apply to hardware or software re-
quirements verified at FCA for the individual
configuration item.

3.2.3.1.10 Production Readiness
Review (PRR). This review is intended to
determine the status of completion of the
specific actions which must be satisfactorily
accomplished prior to executing a production
go-ahead decision. Its major emphasis is on
hardware, but software is reviewed in its ap-
propriate context. The review is accom-
plished in an incremental fashion during the
Full-Scale Development phase, usually two
initial reviews and one final review to assess
the risk in exercising the production go-ahead
decision. In its earlier stages the PRR con-
cerns itself with gross level manufacturing
concerns such as the need for identifying
high risk / low yield manufacturing processes
or materials or the requirement for manufac-
turing development effort to satisfy design
requirements. The reviews become more re-
fined as the design matures, dealing with
such concerns as production planning, facili-
ties allocation, incorporation of producibility-
oriented changes, identification and fabrica-
tion of tools / test equipment, and long lead
item acquisition. Timing of the incremental
PRRs is a function of program posture and is
not specifically locked into other reviews.

3.2.3.2 Software Development Doc-
umentation. Figure 3-2 depicts the docu-
ments recommended by DoD-Std-2167A.
The excerpts below are from the various Data

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999

13:24:30

ANSIV/ATIAA G-031-1992

Item Description (DID) documents associated
with them.,

3.2.3.2.1 System / Segment Speci-
fication (SSS, #DI-CMAN-80008A).
This document specifies the requirements for
a system or a segment of a system. Upon
Government approval and authentication, the
SSS becomes the Functional Baseline for the
system or segment. This document provides
a general overview that may be used by
training personnel, support personnel, or
users of the system.

3.2.3.2.2 System / Segment Design
Document (SSDD, DI-CMAN-80534)
The SSDD describes the design of a sys-
tem/segment and its operational and support
environments. It describes the organization
of the system as composed of HWCI, CSCI
and manual operations. The SSDD contains
the highest level of design information for the
system and is used as a basis for developing
lower level documents.

3.2.3.2.3 Software Requirement
Specification (SRS, DI-MCCR-
80025A). The SRS specifies the engineer-
ing and qualification requirements for a CSCI
and is used as a basis for its design and
formal testing. The SRS becomes the base-
line of requirements against which the CSCI
performance is assessed.

3.2.3.2.4 Interface Requirements
Specification (IRS, DI-MCCR-
80026A). The IRS specifies the require-
ments for the interfaces between the CSCIs
as well as other configuration items. The
implementation of interfaces is later assessed
and checked for compliance with the IRS.

3.2.3.2.5 Software Development
Plan (SDP, DI-MCCR-80030A). The
SDP describes a contractor's plans for con-
ducting software development. It covers the
organizational responsibilities, the proce-
dures, the management and the contract work
breakdown for the effort.

3.2.3.2.6 Software Design Docu-
ment (SDD, DI-MCCR-80012A). The
SDD describes the complete design of a
CSCI. It describes the allocation of

Information Handling Services, 1999

AIAA 6-031 92 WM 0b95534 0001305 3&T -

ANSI/AIAA G-031-1992

requirements to CSCs and CSUs. The SDD
is used to present the software design at PDR
and CDR and is the basis for coding the
software.

3.2.3.2.7 Software Test Plan
(STP, DI-MCCR-80014A). The STP
describes the formal qualification test plans
for one or more CSCIs. It identifies the
software test environment resources required
for formal qualification testing and provides
schedules for FQT activities. In addition, the
STP identifies the individual tests that shall
be performed during FQT.

3.2.3.2.8 Interface Design Docu-
ment (IDD, DI-MCCR-80027A). The
IDD specifies the detailed design for in-
terfaces between CSCIs as well as to other
configuration items. The IDD and IRS to-
gether serve to communicate and control in-
terface design decisions. The IDD is used as
the basis for software design of the inter-
faces. It in turn should reflect the require-
ments of the IRS.

3.2.3.2.9 Software Test Descrip-
tion (STD, DI-MCCR-80015A). The
STD contains the test cases and test proce-
dures necessary to perform qualification
testing of CSClIs identified in the STP.

3.2.3.2.10 Source Code and Source
Code Listing. This is the actual code and
its listing as developed from the SDD. The
executable object code produced from the
source code is what is actually executed on
the computers.

3.2.3.2.11 Software Test Reports
(STR, DI-MCCR-80017A). The STR is
a record of the formal qualification testing
performed on a CSCI. It provides the gov-
ernment with a permanent record of FQT and
can be used for retests as needed.

3.2.3.2.12 Version Description
Document (VDD, DI-MCCR-80013A.
The VDD identifies and describes a version
of a CSCI or interim changes to previously
released versions. It records data pertinent to
the status and usage of a CSCI version or
interim change.

10

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

13:24:30

3.2.3.2.13 Software Product Speci-
fication (SPS, DI-MCCR-80029A).
The SPS consists of the SDD and the source
code listing for a CSCI. Upon government
approval and authentication following a
Physical Configuration Audit (PCA), the
SPS establishes the product baseline for the
CSCI.

3.2.3.2.14 Operations and Support
Documents. These consist of the docu-
ments delivered with the operational software
to support system operations. They include
the following: Computer Systems Operator's
Manual (CSOM, DI-MCCR-80018A),
Software User's Manual (SUM, DI-MCCR-
80019A), Software Programmer's Manual
(SPM, DI-MCCR-80021A), Firmware
Support Manual (FSM, DI-MCCR-80022A),
and Computer Resource Integrated Support
Document (CRISD, DI-MCCR-80021A).

The details on how to develop the content and
format of the above documents are contained
in the referenced Data Item Description
documents.

3.3 Other Software Life Cycle
Models :

Two other software life cycle models need to
be discussed. These are the spiral model and
the evolutionary model. The spiral model of
software development was pioneered by
Barry Boehm at TRW. Its distinguishing
feature is a risk driven approach to the
software process, rather than the specification
driven one of the waterfall model. The
evolutionary model, on the other hand,
comes from the research and development
community and is prototype driven. These
two models are briefly summarized below.

3.3.1 A Spiral Model for Software
Development

The spiral model shown in Figure 3-3 has
evolved from the waterfall model through
experience with government projects. The
radial dimensions represents the cumulative
cost incurred in development steps to date.
The angular dimension represents progress
made in completing each cycle of the spiral.

Information Handling Services, 1999

FATAA G-031 92 EE DL95534 0D0L30L 2Tk WM

DETERMINE
OBJECTIVES,
ALTERNATIVES,
CONSTRAINTS

COMMITMENT

4

ANSVATAA G-031-1992

IDENTIFY, RESOLVE RISKS

Risk
Analysis

Risk
Anglysis

Ry
A Proto-

type 1
ly"el

PARTITION

Plan

PLAN
NEXT PHASES

Requirements Plan
Life Cycle Plan

Development

Integration
and Test

Congept of
Operation

Requiremen's
Validation

Dssign Valdation
and Verifcaton

|
Integration 1

and Test

|Acceptancel
Test

DEVELOP. VERIFY
NEXT-LEVEL PRODUCT

Imp'smentation)

Figure 3-3 A Spiral Model for Software Development

The cycles of the spiral begin with the iden-
tification of objectives, alternatives and con-
straints. Next, the alternatives are evaluated
with respect to the objectives and constraints.
Areas of project risk are thus brought to light
and focused upon. Based on the assess-
ments, the area(s) selected is prototyped, de-
signed, developed and tested. Having com-
pleted the cycle for the selected area(s), the
planning begins for the next cycle of
development.

The important feature of the spiral model is
the review at the completion of each cycle.
This review addresses the products and pro-
cesses of the completed cycle to assure ob-
jectives were met, and sets the stage and con-
sensus for the next cycle.

The details of the spiral model can be found
in articles on the subject by Barry Boehm.
One such source is “A Spiral Model of

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

13:24:30

Software Development and Enhancement”,
ACM SIGSOFT Software Engineering
Notes, Volume II, No. 4, August 1986. The
above description was taken from this article.

3.3.2 The Evolutionary Model of
Software Development

The evolutionary model takes the perspective
that initially we do not know what we are
going to end up with. That is, in software, it
is rarely possible to state all the requirements
up front, and even if we do, they will
change. Based on this assumption, the
model is driven by a prototyping approach.
A series of incremental developments and
tests are carried out. As the problem is better
understood (through prototyping) larger parts
of it can be properly developed and tested.
Eventually the whole problem is understood,
developed, and tested; and the software is
completed.

11

Information Handling Services,

EVALUATE ALTERNATIVES:

1999

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

LATAA G-D31 92 WE 0L95534 0001307 132 MW

ANSVI/ATAA G-031-1992

4.0 DEVELOPMENT ISSUES
AND TRADES FOR KBS LIFE
CYCLES

4.1 Introduction

Having reviewed the predominant life cycles
used for developing software, we are ready
to look at a life cycle for KBS. Prior to pre-
senting such a life cycle, it is useful to ana-
lyze the environments of KBS development.
This chapter covers some of the typical de-
velopment constraints as well as the special
needs encountered in the development of
KBS. Once these are explored, the software
life cycles are assessed in terms of the appli-
cability, strengths and weaknesses. Finally,
trades are made to arrive at the appropriate
life cycles for KBS.

4.2 Typical KBS Development
Constraints

When a technology such as AI/ KBS is new,
there are very few constraints imposed on its
use. The reason for this is that people want
to see the utility of the technology demon-
strated first (i.e., does it work?). Once the
utility is demonstrated, more rigor is imposed
on the technology during its transition from
the laboratory to field applications. The rigor
becomes proportional to the criticality of the
application and the amount of investment (or
potential loss) to the user. KBS have been
steadily moving from the laboratory end of
the spectrum to the fielded application end.
They are reaching the stage where they are
beginning to be incorporated into critical
aerospace elements. With this transition
come the constraints of the typical aerospace
environments.

Most aerospace software that is to be fielded
in a major system comes with the mandated
use of a standard like DoD-Std-2167A, or an
equivalent variant. Few Requests for
Proposal (RFP), if any, mandate the use of
the spiral, evolutionary, or other software
models. This is understandable from the

prospective of the government since software
is usually part of a larger system containing
hardware and operations. Full systems have

13:24:30

well defined life cycles and the software must
fit within them. The waterfall model has
evolved to fit within the system life cycles
used in aerospace.

As noted above, the software is usually part
of a larger system. This is certainly true with
KBS, which are a subset of software. In a
typical aerospace environment, they will need
to be interfaced and/or integrated with other
(conventional) software components as well
as with hardware and the user operations of
the overall system. Very often, the software
and hardware with which KBS will be
working are either already in place or, due to
systems level trades, have already been se-
lected. Thus the knowledge based system
must be adapted to its environment as op-
posed to having influence on its selection.
Naturally, there are exceptional problems in
which KBS development will need to influ-
ence even existing environments and changes
will need to be effected in order to achieve
overall system effectiveness and efficiency.

Another set of constraints in aerospace pro-
grams is that of cost and schedule. Unlike a
laboratory environment, aerospace systems
nearly always are under highly constrained
budgets. This constraint leaves little room
for experimentation, errors and rework.
Since KBS are usually only a fraction of the
overall system, it must be developed within
the constraints of the overall system
schedule, again, leaving little margin for
variations from a planned development.

A final constraint that aerospace systems de-
velopment imposes on KBS life cycles is that
of management. Over the years, the govern-
ment and industry have evolved a set of sys-
tems (including software) management
guidelines. These are very often imposed on
system development as requirements in the
RFPs and must be addressed by the
developers.

The constraints discussed above greatly im-
pact the selection of a life cycle for KBS and,
in general, lean toward a waterfall model.
These are balanced in section 4.3 against the
special needs of KBS that are discussed.

Information Handling Services, 1999

AIAA G-D031 92 BN 0L9553% 0001308 079 EE

4.3 KBS Development Needs

Taking the position that KBS are a subset of
software technology, there are still some
special development needs that must be
addressed by an effective KBS life cycle
model. Many of these needs are tied to the
very heart of what makes KBS unique, the
knowledge that they capture and use.

Often, when KBS development is under-
taken, it is to solve a complex problem and
there is a great deal of uncertainty in the
requirements and design for the end product.
Much of this initial uncertainty, and conse-
quent need for flexibility, stems from our
limited understanding of the human thought
mechanisms that are to be incorporated into
KBS. Another reason for the uncertainty is
the lack of experience at putting performance
requirements (as we do for other aerospace
system elements) on human expertise. For
example, how do we evaluate or measure the
performance of a medical doctor? This
problem of measurement, and hence the def-
inition of initial requirements, directly trans-
lates to a knowledge based system that is to
perform the same diagnostic activities as the
doctor (or other expert) does.

In addition to the problems associated with
performance requirements for KBS, it is also
difficult to initially estimate the scope of the
system. The reason is that each application is
unique, and that experts in different fields
(and even in the same field) solve problems
differently. Thus, one needs to work with
the expert(s) first to determine the complexity
and depth of the problem-solving thought
process that KBS will emulate.

A unique aspect of KBS is their evolutionary
nature. They are not like a mathematical
algorithm that, once defined, is fixed forever.
The knowledge bases in these systems tend
to grow as more knowledge is discovered
from the expert. That knowledge, in turn, is
incorporated and used to produce more pre-
cise results. Their ability to grow and evolve
gracefully is one of the advantages of KBS.

Another quality of KBS that must be consid-
ered is the complex interactions between

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15,

1999

13:24:30

ANSI/ATIAA G-031-1992

modules of a knowledge base. Unlike the
interfaces (which are fixed) between subrou-
tines of conventional software, the interac-
tions in KBS are driven by the cumulative
data used as well as the knowledge acting on
that data set. This declarative, data / knowl-
edge-driven characteristic makes the interac-
tions far less predictable than with procedu-
ral-type algorithms. The complexity and dif-
ficulty in prediction of interactions puts
greater emphasis on the need for testing and
verification of KBS throughout their life
cycle.

The above unique aspects of KBS, combined
with the limited production experience with
them (compared to conventional software and
hardware) leads to their recognition as an area
of risk in an overall system. As with other
areas of risk, KBS should be focused on in a
life cycle and treated with greater flexibility
than components that are well understood.
Areas of risk are usually given more
resources and get more management attention
than their mundane companions.

The above development needs must be ac-
counted for in KBS life cycle models. The
next section trades the constraints and needs
of KBS development in light of software de-
velopment and arrives at KBS life cycle
models.

4.4 Trades for a KBS Life Cycle

In order to arrive at an optimal life cycle
model for KBS in aerospace, let us begin
with the characteristic of the software
models. The waterfall model has evolved
from aerospace system development and is
driven by specifications. The spiral model
has evolved from the difficulties experienced
with software development and is risk
driven. The evolutionary model comes from
the research and development community and
is driven by the prototyping process linked to
the evolutionary nature of knowledge acqui-
sition. Each has strengths and weaknesses
that make them appropriate for different
applications. Figure 4-1 summarizes some
key characteristics of these software devel-
opment models. It should be noted that under
specified, controlled conditions, various

13

Information Handling Services, 1999

rAerA G-UB]: 92 m@ 0L95534 0001309 TOS WA

031-1992

ANSI/ATAA G-

suosLIeduwo)) PPOA JudrdopAd(] 31eM}JoS [-p 2InSig

(SNLVLS ANV SS3HDO0Ud)
S$S3004Hd OLNI ALITGISIA 371117 »
dN ONIMVIS ALINDIALI] »

S1ININ3HINO3Y SL1INS3Y TVILINI
40 “TOHLNOD a3l » ® INJNJOTIA3A HILSVL « | SFOHNOSIH ANIVHLSNOONN (NaAlHa
STOHLNOD NOILO3HIA 3ONVHO OL ASV3 « SW31890YUd A3aNI43a-T1I » IdALOLOHd)
FINAIHOS ANV LSO ALINIT » a1iNg TVLNIWIHONI » 3ZIS NNIG3IN OL TIVINS » § AHVNOLLNTOA3
ST13aon
IN3INdOTIA3A NOILVINIWNNOOA H3H1O0 Ol 3AlLAVAY »
ANV NOILVIIHIO3dS A3 LINTT » (INIWIDVYNVIN
SM3IAIH ANV SINOLSTTIN MSid) SININOdNOD SNIVHLSNOD
40 INJWdOTIAIA A3LINIT » | TTVOILIHO NO JLVHINIONOD . 304NOS3d @3 LINIT »
STO0HINOD ITNAIHIOS IN3NdOTIAIA WHOLINN SVIHV AXSIH NMONX » (N3AIHGA MSIY)
ANV LSOD TIVHIAO AALINIT » “NON S31VAONWODIV . LN3NdOTIA3A IZIS-NNIdIN - vHIdS
LNINdOTIAZIA AHVNOILNTOAST ALIMIGVNIVLINIVIN GO0Y »
3LVAONINOIIV LON S30d » ALITIGISIA LNINIODVYNVIN LNIWIHINOIH LNFWNHIAOD »
SININOdWOD / INSWNJOT3IA3A AOO0H $30HNOS3H AANIVHLSNOD » (NaA=a
TV 4O SS3HO0Hd WHOLINN » SLNIVHLSNOD Ol SMHOM - SW3T804d G3ANIJ3A-T13M » | NOILYIIHID3dS)
JONVHO OL1 171nd14dId » 3HNLONYLS SNOHOYIH « | IN3IWJOTIAIA FTVOS-IOHY] » TIV4HILVM
SSANMVIM HLON3Y1S ALINMIavoIiddv S13aon

14

13:24:30

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
1999

July 15,

1999

Information Handling Services,

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

JAIAA G-031 92 WM 0L9553% 0001310 727 mm

academic arguments could be made about the
equivalencies (or transformations) of one
model to another. The intent here is to keep
the concepts simple and treat the models in
their intended forms.

Next, the constraints of aerospace develop-
ment of KBS are superimposed on the
software model's characteristics (Figure 4-2).
To begin with, the constraint of interfacing /
integrating with specified software and hard-
ware components could be accommodated by
any of the models. Next, the requirement for
management visibility by the government
points to a waterfall model, and to a some-
what lesser extent, the spiral model. The
necessity of working within cost and sched-
ule constraints heavily moves us toward a
waterfall model since the other two are weak
in this area. Finally, the frequent government
mandate of a waterfall model makes that the
inescapable choice upon which to build a
KBS life cycle model.

On the other hand, Figure 4-1 shows that the
waterfall model has some weaknesses that are
relevant to the development of KBS.

ANSI/ATAA G-031-1992

Combining the waterfall model push with the
unique development needs of KBS leads us
toward an augmentation of the waterfall
model for a KBS life cycle.

The uncertainty in initial KBS requirements,
along with difficulties in scoping the size
(domain), points to a greater need for flexibil-
ity in a KBS life cycle. The evolutionary
nature of KBS development leads to explo-
ration of prototyping. Finally, the complex
interactions among KBS modules point to
increased testing in the life cycle.

Combining the needs of KBS development
with the constraint-driven selection of a
waterfall model leads to a hybrid solution of a
waterfall with a flexible prototyping front
end. This model, named the AI Software
Engineering (AISE) model, is shown in Fig-
ure 4-3. The fit of this AISE model
with/within an overall aerospace system de-
velopment, and standard software develop-
ment life cycle in specific, is shown in Figure
4-4. The details of the AISE model for the
development of KBS are covered in chapter
5.0 below.

o
O
>
3 COST AND
= SCHEDULE
z
<
& ¥ MANAGEMENT
2] VISIBILITY
S
O
SPECIFIED S/W & H/W
| l
| l
EVOLUTIONARY SPIRAL WATERFALL

Figure 4-2 Matching of Software Models to Aerospace Constraints

13:24:30

15

Information Handling Services, 1999

tAIAA 6-03) 92 M 0bL95534 0001311 kL3 WA

1992

031-

ANSVAIAA G-

yuowrdopas SEYI 10§ PPOIN (ASTV) SurseumiBuy 21em)jos IV YL, €-p 2am3iy

Hddl Hdal HodH
3dALOl0YHd 3dAloloYHd 3dALOLOHd
1onaoyd NDISad SINIWIHINOIH
—
~ - _ VvV \/ /
~ Had Hoa /
-
~ /
—
~— ~ \
S
/ —
ONIdALOLOYd ‘al ‘_
"O1dd
NOLLVHDILNI/LNINGOT3IAIA
1S31 AILVYOILNI \/
Hao
JONVNILNIVIN \/
uHl
AHIAMIA/IONVLDIDIV

16

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

1999

Information Handling Services,

13:24:30

1999

July 15,

AIAA 6-031 92 IR 0b95534 0001312 STT -

ANSI/ATAA G-031-1992

IPAD I WR)SAS pue YL9TT-PIS-POd PIM N HSIV §-b dan3Ly

NOILV¥AdO LSEL ANY NOLLVIOHING adarorodd [aaxrorowd / saxrorowa | ANy
Sy NOLLVAOEINI anvy 10nao¥d Noisad [/ siNawaundsy | OLddv
WIISAS INAWAOTAATA 740ud S
1 [)
W4 D ¥ad
HONYI %w&.ﬁ ISALANY ISHL ANV ,wm_.fw .qm_mmm‘% NOISEQ NOISAQ SISKTYNV .
O . NOLLVYDAINI Nowveoanr | BV | 8% qFTIviaa KIVNDNTTTNd | SINGWRMINOAA TRLIOS
M WALSAS SO el RS TIVMIIOS TIVMIIOS TAVMIIOS ML
04 WL AW 4ad uSS
I | | I I
Q%M&wﬂmﬂ% LSALGNV LSELANV LSHIL ANV NOISHA NOISIA SISATYNV NOISHWSISATVNY
oo NOLLVSDHINI NOLLVEDFINT INAWOTIATA oead e SINTARIINOT |~ SINGWTAINOTA
O o WHISAS WHLSASENS /NOLLVOINEVA WALSASENS WHISAS

ININDIS
WHLSAS
Jqo
WILSAS

17

1999

Information Handling Services,

13:24:30

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
1999

July 15,

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

" AAIAA G-031 92 WM 0u95534 0001313 u43c W

ANSI/ATAA G-031-1992

Note that although we arrived at the waterfall
hybrid for aerospace application, the critical
front end of the AISE model could just as
easily be tailored into a spiral or an
evolutionary model of software development.
Such flexibility in tailoring makes it useful
for a wide range of development scenarios,
and will allow it to evolve with such
standards as the DoD-Std-2167A.

5.0 RECOMMENDED KBS
LIFE CYCLE, THE AISE
MODEL

5.1 Introduction

In this chapter, the KBS life cycle that was
arrived at in chapter 4 (and shown in Figures
4-3 and 4-4) is developed further. To begin
with, the phases of the AISE model are
discussed with specific emphasis on the
unique aspects of KBS development in
section 5.2. Next, section 5.3 covers the
recommended reviews for the development of
KBS. Then section 5.4 focuses on the
documentation recommendations. Finally,
section 5.5 discusses some thoughts on the
tailoring of the AISE model to meet the
variety of circumstances that might be
encountered during KBS developments.

It is important to note that two distinct envi-
ronments exist for KBS, the development
environment and the target environment. The
development environment is rich in tools, is
very flexible, and is optimized for prototyp-
ing by the developer. The target environ-
ment, on the other hand, is stripped of tools,
is tailored to interface with users and external
subsystems, and is optimized to the applica-
tion. This target environment must be ma-
tured as the KBS CSCI prototyping takes
place so that system integration will occur
smoothly.

5.2 KBS Life Cycle Phases

5.2.1 Application Problem Identifi-
cation Phase

The goal of this short phase is to analyze and
properly define problem elements suitable for

13:24:30

KBS solution. Specific system areas are
isolated using criteria for forming CSCls as
well as techniques for assessing KBS
applicability. Trades are performed against
the use of other techniques to ensure that
KBS are the best solution methods for the
problem. The risks of undertaking a KBS
development effort are assessed. Finally, a
cost/benefit analysis is performed, and draft
development plans are developed.

5.2.2 Prototyping Phase

This phase constitutes the core of the life cy-
cle for KBS. The objective of prototyping in
this life cycle standard is to develop the full
capability of KBS CSClIs as well as the target
environment designs. This is accomplished
by three successive prototyping activities:
requirements prototype, design prototype,
and product prototype. These prototypes
address the need for evolution of KBS and
incorporate additional, incremental tests to
ensure that KBS module interactions are
clearly understood and well developed.

5.2.3 Requirements Prototype

The purpose of the requirements prototype
phase is to address KBS development need
for front-end flexibility. More specifically,
this phase addresses the initial uncertainty in
requirements and project scope. During this
phase (Figure 5-1), a full understanding of
KBS CSCI requirements and scope are de-
veloped through an initial prototyping of the
knowledge base. Breadth is the key factor
with enough depth to get a functional break-
down of KBS, as well as an understanding
of the interfaces external, to KBS CSCIL
During this phase, the target environment is
also explored for requirements and the proto-
typing tool set is addressed. The emphasis is
on prototype development with an analysis /
evaluation activity toward the end. Based on
the outcome of the analysis, this prototype
may be a throw-away. This is especially
likely if the conclusion is that the wrong tools
are being used and / or the initial knowledge
base structure is inappropriate. Discarding
the requirements prototype should not be a
goal, but neither should it be a burden. The
objective is to get a very clear understanding

Information Handling Services, 1999

AIAA G-D31 92 M@ 0L9553Yy DljD].B].'-l 372 W

ANSI/ATAA G-031-1992

ad£j0301 spuowroambayf -6 2anSLy

AVMVMOHHL V 39 NVO

SIN3IW3HINO3H
INIWNOHIANT L3DHVL -
JONVIWNHO4H3d ANV “ ST001

‘19S 3903 TMONM HO4 SINIWIHINOIY - NOILVOIILNIAI MSsiH ~

SIOV4HILNI TVILINI — NOLLO3T3S ST001 -
NMOMIVIHE TYNOILONNS — $SIHOO0Hd IN -
1d3ONOD TVYNOILVHIdO - SSINTLITdNOD 13S SINFWIHINOIY —
¢ 31VNIVAS ¢ §83SSV
3dA1010Hd TVLLINI {3033N s3031d FHL
ANV S1d3ONOOD NDIS3A JLVYNTVAT TIV MONM IM NIVIHIOSY
: 350ddNnd 824 :3S0dufd HOdH
JZATYNVALVNTVAL \ ININdOTIAIA \ ININJOTIAIA

V Y

M3IA3H M3IIATH 1d3ONOD
1d430NOD 3dA1010Hd
NoIs3a SINAWILINOIH

SININOJNOD SEX FHL HO4 SINIWIHINOIH ANV 4O ONIANVLSHIANN T11Nd 4O013A3A
*IAILO3Nr90 3dA1010Yd SLNINIHINO3Y

19

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

1999

Information Handling Services,

13:24:30

1999

July 15,

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

AJATIAA 6-D31 92 WM 0kL9553Y DDEIlélSW EI]';;

ANSI/ATAA G-031-1992

of how to proceed from here in an orderly
fashion.

5.2.4 Design Prototype

This phase is incorporated to evolve a
functional prototype of KBS CSCI. The
emphasis here is on full breadth with greater
depth then previously achieved in the
Requirements Prototype phase. By the
conclusion of this prototype (Figure 5-2), a
full KBS design should exist, analogous in
detail to that of CDR level for conventional
software. The prototype should be capable
of executing all functions of the final system,
but not have the fidelity or performance
specified in the requirements because it need
not be complete. In addition to the
knowledge base, the system interface and
user interface should be taking shape. The
target environment for the KBS CSCI should
also be evolving along with other software
CSCI, and thus should reach a level of PDR
maturity by the end of this phase. As
intermediate tests are conducted on the
Design Prototype, test plans need to be
developed for later phase use.

Unlike the Requirements Prototype, the
Design Prototype is not a throwaway. Based
on lessons from the previous phase, it is built
with the right tools and to the correct
requirements. The Design Prototype is the
baseline from which KBS are developed
during the Product Prototype phase.

5.2.5 Product Prototype

The objective of this phase is to develop a
complete KBS product in a prototype envi-
ronment (Figure 5-3). Since the full breadth
was covered in the previous phase, this phase
focuses on the complete depth of the knowl-
edge base. All the functionality and fidelity
should be present (i.e., the knowledge base
is complete in meeting requirements) along
with performance to requirements (except
where the computational capabilities of the
development environment fall short of those
in the expected target environment). Testing
is extensive to ensure proper operations and
readiness for operational use. If the

knowledge based system was not being

13:24:30

integrated with other system components and
fielded, it would at this stage be a completed
knowledge based system.

The target environment and associated inter-
faces are again being designed alongside the
other software CSCI, and should reach CDR
level maturity by the completion of this
phase. Based upon the testing of this phase,
test plans, test procedures and integration
plans should be completed and ready for use
downstream.

5.2.6 Development / Integration
Phase

This phase embeds / integrates KBS into the
target environment. KBS are ported from the
prototype environment to the intended
host/target environment. Integration to
external components / CSCI is carried out.
An integrated user interface is implemented.
Testing is performed to ensure that
functionality and performance are achieved.

5.2.7 Integrated Testing and Evalua-
tion Phase

This phase is identical to, and fits with, the
standard software life cycle. Regression tests
and overall system performance tests are
executed. Validation is done against re-
quirements. Acceptance testing takes place.

5.2.8 Maintenance Phase

This phase is also identical to the standard
software life cycle maintenance phase.

5.3 Recommended Reviews

The reviews for this tailored knowledge
based system life cycle coincide with the
major reviews of other CSCIs and the
system. They align with the Requirements
Review (RR), the Preliminary Design
Review (PDR), the Critical Design Review
(CDR), the Test Readiness Review (TRR),
and the Formal Qualifications Review (FQR).
A few extra, less formal, reviews are inserted
into the prototyping phase to ensure that the
effort stays on course. These reviews are
used to get the customers more familiar with

Information Handling Services, 1999

AAIAA 6-031 92 BN 0L95534 0001316 145 BN

ANSI/ATAA G-031-1992

ad£)0j01g uSIsog 7-S 2Indiyg

NOIs3ad
AHVNINITIHd INJWNOHIANT 139UVL -
SNV1d 1831 -
1d430NOJ SdO g3lvadn —~
SIOVIHIINI WILISAS - $S300Hd LNINWJOTIAIA -~
S3OV4YILNI HIsSN - NOILLVOLLIN JMSIH -
NOIs3d sed TNd - S30VAHALNI AHVNIANI3Hd -
JdALO10Hd TVYNOILONNS - NDIS3A TVILNI -
JLVATVAS *SS3SSY
ONIdALO1OHd
15ndodd HOd S$S3INIavId SHIM3IATY ANV sHISN
S11 NV NYIS3a T1nd 31vNIvA3 WOHd Xovaa33d NOIs3d Nivigo
:3S0dHNd Hdd :3S0dHNd Hdai
SISATYNY / zo_._.<:.._<>m\ ININJOT3AZA \ 1IN3INdOTIAAA
M3IIATH M3IAZH
NDIs3a 3dA10104Hd
AHVNINI3Hd NOIS3dA “TVILINI

NOILVLINIWNOO0A NDISIA 3131dNOD ANV IdALOL0Hd TVNOILONNL V OL IATOAT
:3AILO3Mr490 3dA1L010Hd NOIS3A

21

1999

Information Handling Services,

13:24:30

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
1999

July 15,

AIAA 6-031 92 IIII:'iSSB'-I 0001317 081 W

-031-1992

ANSTVAIAA G

ad£30j01J onpoig ¢-S In3iyg

A3 SI 3dA1010Hd SIHL 40 3SN3H

SSANTLITdNOD
INSINVHOIN 3ON3IHIINI -

NV1d NOLLVINIWITdINI INTJWNOHIANT 130HVL — SSIANILITJINOD SFOVIHILINI -

NOLLVLINZIWNOOAa H3sn - SSINILITdWOD X -
1430NOJ SdO d3lvadn - SA33N INJWIONVHNIT -
NVd NOILVHOD3LNI — $3HNA300Hd 1S3l -
NDIS3d d37Ivi3d INSWNOUIANS 139HVLE - JONVYNHO4H3d 1ONA0Hd —
JdAL1OLOHd 1ONAOoHd - : §S3SSV
: JIVAIVAI
SINIWIHIND3YH 133N
3dALOL10OHd ALMIgVdVYI TINd M3IAIH Ol ALNIgVdVYO LONA0Hd SS3SSV
: 3S0ddnd 5d0 : 3SOddnd dddi

INIWdOT3A3a \ 1s31 \ 1NINdOT3AIG

\Y% \Y%

M3IAZH NDIS3a M3IATH 3dA1010Hd
TAVYILLIHD 13NAodd TVILINI

INIJNNOHIANT 3dAL0L0Hd V NI 1LONAO0Hd SaX T1iNd 3HL dOT3A3d
-3AILO3rd0 3dA10104d 19Naodd

22

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

1999

Information Handling Services,

13:24:30

1999

July 15,

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

ATAA G-031 92 W 0b95534 000L3L8 Ti1s BN

the product as it evolves and gain acceptance
and confidence in its use. KBS specific
portions of the reviews are presented below.

5.3.1 Requirements Prototype Con-
cept Review (RPCR)

Ascertains that the pieces for the KBS CSCI
are known. Requirements set completeness
is assessed. Knowledge engineering
progress is evaluated. Prototyping tool
selections are examined. Development risk is
addressed.

5.3.2 Requirements / Design Concept
Review (RR / DCR)

Evaluates the concept of the KBS design and
the prototype operational concept. Functional
breakdown is assessed for completeness and
decomposition. Initial interfaces are pre-
sented to assure fit with the rest of the sys-
tem. The requirements are assessed for the
knowledge set, tools and performance. Also,
the target environment for the CSCI is re-
viewed.

5.3.3 Initial Design Prototype Re-
view (IDPR)

Evaluates design from the user perspective
and obtains feedback. The initial design is
reviewed for compliance with user needs.
Preliminary interfaces are assessed both from
a user and system perspective. The risks are
reassessed along with the overall develop-
ment process and progress.

5.3.4 Preliminary Design Review
(PDR)

Evaluates completeness of design and
readiness for product prototyping. The
functionality of the prototype is evaluated.
The completeness of knowledge based design
is assessed (this should be at a level
equivalent to CDR for software). User
interfaces are re-evaluated along with system
interface and operational concept updates.
The target environment should be at a PDR
level.

13:24:30

ANSVAIAA G-031-1992

5.3.5 Initial Product Prototype Re-
view (IPPR)

Assesses knowledge based CSCI capability
to meet requirements. Performance is
assessed in all terms (allowing for
improvements gains in the target
environment). The completeness of the
knowledge base, the inference mechanism,
and the interfaces are assessed. Final
enhancements are identified and test
procedures are agreed upon.

5.3.6 Critical Design Review (CDR)

Evaluates full capability of prototype knowl-
ede based CSCI. A full functioning and
complete CSCI should exist in the prototype
environment. Target environment design is
evaluated and should be at the standard soft-
ware CDR level. A reassessment of plans for
testing and integrating with the full system
should be completed.

The reviews for Test Readiness and
Acceptance / FQR are no different from those
of standard software. By the TRR, the
knowledge based CSCI is a fairly standard
module integrated into its target environment
along with the other CSCls.

5.4 Recommended Documentation

In general, one way to handle documentation
for KBS is to insert modifications to the ap-
propriate documents already defined with
2167A (or other standards). In the AISE
KBS life cycle, discussed above, the proto-
typing phases run ahead of the standard
software CSCI development. Because of
this, some of the KBS documentation will
also lead to some of the standard software
documentation. It is recommended that the
KBS documents be developed as independent
inserts and then later be integrated into the
standard documents.

Some of the recommended KBS insert doc-
uments should be the following:

* KBS Requirements
(preliminary and final)

Specification

23

Information Handling Services, 1999

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999

AIAA G-031 92 B 0695534 0001319 954 WA

ANSI/ATAA G-031-1992

* KBS Interface Requirements
Specification (preliminary and final)

* KBS Design (preliminary and final)

o KBS Interface Design Document
(preliminary and final)

» KBS Testing (and Verification &
Validation) plan

* KBS Operations Support Document
» KBS Product Specification

The exact contents and formats of these along
with their integration into standard documents
requires further development.

5.5 Tailoring the KBS Life Cycle

The KBS life cycle model presented in this
Guide was developed to support aerospace
systems broadly. As such, it was developed
to accommodate the full constraints of an
aerospace development program, which often
entails integration / interface to other
components, cost and schedule constraints
and a mandate of a waterfall model for
software. In addition to meeting these
constraints, it was also developed to be flex-
ible and applicable to a broad range of devel-
opment needs with a minimum of tailoring.

To begin with, the model should be capable
of supporting the various system acquisition
stages. These include Concept Definition
(CD), Demonstration/Validation (DEMVAL),
Full Scale Development (FSD), and Deploy-
ment / Maintenance. Figure 5-4 shows that
the AISE model, as presented in its full form,
fits into the FSD phase of a system acquisi-
tion. However, during the Concept

13:24:30

Definition and DEMVAL phases, the front
end of the model, consisting of Problem /
Application Identification and prototyping
may suffice.

The Deployment / Maintenance phase can be
supported for upgrades by using a variation
shown in Figure 5-5. Since the application is
already in place, a Requirements
Specification replaces the Problem
Identification Phase. This is followed by a
condensed set of prototyping phases leading
to development/integration and testing and
ending in an upgrade of the system with an
enhanced knowledge based system.

The AISE model for the KBS life cycle is
also adaptable to other circumstances. For
example, the knowledge based system may
be a standalone system with no integration or
interfaces to other components. In such a
case, at the conclusion of the Product
Prototyping phase the knowledge based
system may be complete and operational,
since no porting or further integration is
needed. If the knowledge based system is to
be a standalone system as stated above, but
has some stringent performance requirements
(that a development environment is not
capable of meeting), then add Development /
Integration as the last phase. This would port
the knowledge based system to a target
environment capable of meeting performance
requirements.

When the tailoring of the AISE model (or any
model) is being considered, a thorough
assessment of the anticipated development
should be done. The elements of project
size, complexity, criticality, cost, schedule
and resources should be evaluated. Based
on those evaluations, management should set
the level of rigor applicable to the
development.

Information Handling Services, 1999

AIAA 6-031 92 WN 0L95534 0001321 502 W

ANSI/ATAA G-031-1992

JONVNILNIVIH

saserd 94D uonismboy 103 Sutope], HSIV -5 2InSig

13AON 3SIV

ls3l

NOILVHOIINVINIWAOT13AIA

al
HNIdALOLOHd oIV
\
\
\ \
asd N1 3sn T1nd / //
WIL1SAS LIDHVL \ //
S31vorid3y \ \

\ IVA/WId ANV a9 \

./ NI 3Sn a3LNI \
\
FONVNILINIVIN NoILONaoud INIWdOT3AIa NOLLVAIvA NOLLINIH3a
I1vos 1Ind /NOILLVHISNOW3Q 1d39NOD
1l SW IS 1SN

25

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

1999

Information Handling Services,

13:24:30

1999

July 15,

AIAA G-031 92 M 0695534 0001320 b7hL N

031-1992

ANST/AIAA G

IpPAD uonismboy ue Jo 93e1g dULUUIRTA 0] SULIOjE, ASIV S-S 2InSiy

ININNOHIANST

3avHOdn

1394Vl
sax

NOISS3HO3H
/ONILSTL

NOILVHOILNI
/LNINdOT3IA3A

INJWNOHIANST
IN3INdOTIAIA

ONIdA1O10Hd
J3ISNIANOD

S

NOILVOIHID3dS
SININIHINO3IYH

N JONVNILNIVIN

1s3aL /

\4

AHIANAA/IONVLAIIOV

26

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

1999

Information Handling Services,

13:24:30

1999

July 15,

AIAA G-031 92 BN DL95534 0001322 449 WM

American Institute of Aeronautics and Astronautics

The Aerospace Center
370 L'Enfant Promenade, SW
Washington, DC 20024-2518

ISBN 1-56347-025-X

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics

July 15, 1999 13:24:30 Information Handling Services, 1999

